Maturiní otázky z matematiky 2011-2012

Maturitní otázky z matematiky  

  1. a) Posloupnosti (pojem, zadání, vlastnosti, limita)    

      b) Objemy a povrchy těles 

  2. a) Shodná zobrazení v rovině     

      b) Geometrická posloupnost 

  3. a) Podobnost a stejnolehlost (stejnolehlost jako speciální případ podobného zobrazení, stejnolehlost kružnic)

      b) Aritmetická posloupnost 

  4. a) Stereometrie - metrické vztahy bodů, přímek a rovin (odchylky, kolmosti a vzdálenosti)     

      b) Nekonečné řady 

  5. a) Výroky a množiny (základní pojmy a operace, číselné obory)  

      b) Užití určitého integrálu pro výpočet obsahů plošného obrazce 

  6. a) Derivace funkce (definice, geometrická interpretace, užití) 

      b) Soustavy rovnic 

  7. a) Stereometrie - polohové vztahy bodů, přímek a rovin (rovnoběžnost a průniky)  

      b) Důkazové úlohy o dělitelnosti přirozených čísel 

  8. a) Primitivní funkce (základní pojmy, výpočty neurčitých integrálů)  

      b) Konstrukční úlohy s využitím geometrických míst bodů 

  9. a) Podobnost trojúhelníků, Euklidovy věty, Pythagorova věta  

      b) Slovní úlohy na maxima a minima funkcí

10. a) Vyšetřování průběhu funkcí (pomocí diferenciálního počtu)  

      b) Mocniny a odmocniny

11. a) Kvadratické rovnice a nerovnice (včetně vztahů mezi kořeny a koeficienty)

      b) Užití integrálního počtu pro výpočet objemu rotačního tělesa

12. a) Binomická věta a její užití

      b) Elipsa

13. a) Kombinatorika

      b) Slovní úlohy vedoucí k řešení rovnic a nerovnic

14. a) Inverzní funkce

      b) Řešení kvadratických a binomických rovnic v množině komplexních čísel

15. a) Goniometrické funkce (základní pojmy, vlastnosti a grafy)

      b) Rovnice s parametrem

16. a) Komplexní čísla

      b) Nerovnice s jednou neznámou

17. a) Limita a spojitost funkce

      b) Iracionální rovnice

18. a) Pojem funkce (pojem funkce, obory D(f) a H(f), druhy funkcí a jejich grafy, složená funkce)

      b) Goniometrická rovnice

19. a) Základní vlastnosti funkcí (růst, parita, omezenost, periodičnost, prostota funkcí, funkce s absolutními hodnotami, průsečíky grafů s osami soustavy souřadnic)

      b) Hyperbola

20. a) Analytická geometrie - metrické vztahy bodů, přímek a rovin

      b) Exponenciální rovnice a nerovnice

21. a) Konstantní, lineární a mocninná funkce

      b) Důkaz matematickou indukcí

22. a) Exponenciální a logaritmická funkce, logaritmus

      b) Parabola

23. a) Nepřímá úměrnost, lineární lomená funkce

      b) Faktoriály a kombinační čísla

24. a) Vzájemná poloha přímky a kuželosečky, tečna křivky

      b) Logaritmické rovnice a nerovnice

25. a) Analytická geometrie - polohové vztahy bodů, přímek a rovin

      b) Úpravy algebraických výrazů

26. a) Vektorová algebra

      b) Rovnice a nerovnice s absolutními hodnotami

27. a) Pravděpodobnost

      b) Kružnice v analytické geometrii

28. a) Úhly (druhy úhlů a dvojic úhlů, středové a obvodové úhly, orientovaný úhel)

      b) Tečna grafu funkce v bodě

29. a) Trigonometrie

      b) Kvadratická a kubická funkce

 


Zpět na seznam článků ...

Autor: Waldauf Stanislav | 2639 přečtení | 29. 09. 2011

Informační e-mailVytisknout článek
Starý email
Office 365
Kalendář
<<  Prosinec  >>
PoÚtStČtSoNe
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31     
Redakční systém
Login:
Heslo:

Generováno systémem phpRS